翻訳と辞書
Words near each other
・ Erechtheus
・ Erechthias
・ Erechthias ascensionae
・ Erechthias chionodira
・ Erechthias darwini
・ Erechthias diaphora
・ Erechthias dracaenura
・ Erechthias flavistriata
・ Erechthias glyphidaula
・ Erechthias grayi
・ Erechthias kerri
・ Erechthias lychnopa
・ Erechthias minuscula
・ Erechthias molynta
・ Erechthias mystacinella
Erdős–Kac theorem
・ Erdős–Ko–Rado theorem
・ Erdős–Mordell inequality
・ Erdős–Nagy theorem
・ Erdős–Nicolas number
・ Erdős–Pósa theorem
・ Erdős–Rado theorem
・ Erdős–Rényi model
・ Erdős–Stone theorem
・ Erdős–Straus conjecture
・ Erdős–Szekeres theorem
・ Erdős–Szemerédi theorem
・ Erdős–Turán conjecture on additive bases
・ Erdős–Turán inequality
・ Erdős–Woods number


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Erdős–Kac theorem : ウィキペディア英語版
Erdős–Kac theorem

In number theory, the Erdős–Kac theorem, named after Paul Erdős and Mark Kac, and also known as the fundamental theorem of probabilistic number theory, states that if ω(''n'') is the number of distinct prime factors of ''n'', then, loosely speaking, the probability distribution of
: \frac.
==Precise statement==

For any fixed ''a'' < ''b'',
:\lim_ \left ( \frac \cdot \#\left\} \le b \right\} \right ) = \Phi(a,b)
where \Phi(a,b) is the normal (or "Gaussian") distribution, defined as
: \Phi(a,b)= \frac \, dt.
More generally, if f(''n'') is a strongly additive function (\scriptstyle f(p_1^\cdots p_k^)=f(p_1)+\cdots+f(p_k)) with \scriptstyle |f(p)|\le1 for all prime ''p'', then
:\lim_ \left ( \frac \cdot \#\left\ \le b \right\} \right ) = \Phi(a,b)
with
:A(n)=\sum_\frac,\qquad B(n)=\sqrt}.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Erdős–Kac theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.